Music Genre Classification using Auto-Associative Neural Networks

نویسندگان

  • Abhishek Ballaney
  • Suman Mitra
  • Anutosh Maitra
چکیده

II. REVIEW OF STATE OF THE ART Abstract—Classification of musical genres gives a useful measure of similarity and is often the most useful descriptor of a musical piece. Principal Component Analysis (PCA) has been generally applied on raw music signals to capture the major components for each genre. As a large number of principal components are obtained for different genres, the purpose of applying PCA is not satisfied. This led to, in the proposed work, feature vector extraction directly from the music signal and building an alternative model to capture the feature vector distribution of a music genre. Timbre modeling is done using Mel Frequency Cepstral Coefficients (MFCCs). The modeling of the decision logic is based on Auto Associative Neural Network (AANN) where the models perform an identity mapping on the input space. The property of a five layer AANN model to capture the feature vector distribution is used to build a music genre classification system. The focus of the survey is on the approaches followed at the feature, model and decision levels for music genre classification

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Self-Reconstructing Algorithm for Single and Multiple-Sensor Fault Isolation Based on Auto-Associative Neural Networks

Recently different approaches have been developed in the field of sensor fault diagnostics based on Auto-Associative Neural Network (AANN). In this paper we present a novel algorithm called Self reconstructing Auto-Associative Neural Network (S-AANN) which is able to detect and isolate single faulty sensor via reconstruction. We have also extended the algorithm to be applicable in multiple faul...

متن کامل

Deep Image Features in Music Information Retrieval

Applications of Convolutional Neural Networks (CNNs) to various problems have been the subject of a number of recent studies ranging from image classification and object detection to scene parsing, segmentation 3D volumetric images and action recognition in videos. CNNs are able to learn input data representation, instead of using fixed engineered features. In this study, the image model traine...

متن کامل

Auto-Associative Neural Networks and Eigenbands Fusion for Frontal Face Verification

Face classification is an important area of research with many applications, including biometric security and searching face databases. This article describes an approach to verify faces using Auto-associative Neural Networks and Eigenbands fusion. In Eigenbands strategy each faces is divided in horizontal bands from which are extracted features using PCA. This method aims capture discriminativ...

متن کامل

Improved Music Genre Classification with Convolutional Neural Networks

In recent years, deep neural networks have been shown to be effective in many classification tasks, including music genre classification. In this paper, we proposed two ways to improve music genre classification with convolutional neural networks: 1) combining maxand averagepooling to provide more statistical information to higher level neural networks; 2) using shortcut connections to skip one...

متن کامل

Local-feature-map Integration Using Convolutional Neural Networks for Music Genre Classification

A map-based approach, which treats 2-dimensional acoustic features using image analysis, has recently attracted attention in music genre classification. While this is successful at extracting local music-patterns compared with other frame-based methods, in most works the extracted features are not sufficient for music genre classification. In this paper, we focus on appropriate feature extracti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007